

Using the local fiber orientation and fiber to volume fraction in μ CT data to improve the simulated failure location and strain at break of Long Fiber Thermoplastic (LFT) parts.

B. Becker¹, T. Dierig¹, K.-M. Nigge¹
J. Seyfarth², H. Finckh³,
S. Krämer⁴, P. Weidinger⁴

¹ Volume Graphics GmbH, Heidelberg, Germany

² MSC Software GmbH, Germany

³ Deutsche Institute für Textil- und Faserforschung Denkendorf, Germany

⁴ Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Germany

Cooperation Partners

1)	Brose Group	Sebastian Krämer	Measurelab	sebastian.kraemer@brose.com
2)	e-Xstream	Jan Seyfarth	QU-Manager	jan.seyfarth@e-xstream.com
3)	Volume Graphics	Tobias Dierig	Team Leader Image Processing	dierig@volumegraphics.com
4)	DITF	Hermann Finckh	Manager Simulation	hermann.finckh@ditf.de
5)	Brose Group	Peter Weidinger	Director Materials Laboratory	peter.weidinger@brose.com

— DEUTSCHE INSTITUTE FÜR **TEXTIL+FASERFORSCHUNG**

Objective

- Thermoplastic composites parts for automotive interior components (glass fabric reinforced with complex structure)
- > Injection molded
- > Subject to mechanical loads
- Mechanical simulation based on simulated fiber orientations does not match well with test results

Objective: Improve Mechanical Simulation by using Measured Fiber Orientations

Initial CT Scans (at Brose)

- Tensile specimen
 - Height: 150 mm
 - Width: 10 mm
 - Thickness: 1.8 mm
- Positioning of the tensile specimen with a polystyrene holder
- Complete tensile specimen was scanned two times in seven sub-scans (resolution: 12.5 μm; 50 μm)
- Total scanning time: 30 h
- Difficulty: stability of the x-ray-tube over a period of 30 h

Final CT Scans (at DITF)

- Positioning of the tensile specimen with a mounting
- Dimensions of the tensile specimen:
 - Height: 150 mm
 - Width: 10 mm
 - Thickness: 1.8 mm
- Complete tensile specimen was scanned in four sub-scans (resolution: 12.5 μm)
- Total scanning time: 8 h
- Advantage of the CT at DITF:
 - More modern scanner, designed for high resolution scans and analysis of fiber composite material

Comparison of CT Scans

First Scan 50 µm Brose, Low resolution

 $\begin{array}{c} \text{Second Scan 12,5} \ \mu m \\ \text{Brose, High nominal resolution,} \\ \text{but noise and center artefacts} \end{array}$

Third Scan 12,5 µm DITF, High resolution, low noise, no artefacts

Overall Workflow

Analysis of CT Data using VG STUDIO MAX (1)

CT Scan, CAD and Integration Mesh

Analysis of CT Data using VG STUDIO MAX (2)

CSV Export of all results

Fiber Orientations (1): Overview

Orientation Histogram (Equatorial Plot)

Colour code indicating frequency of fiber orientations θ = latitude, peak 90 deg = xy plane ϕ = longitude, peak 109 deg = 19 deg off y axis

Color code indicating deviation from most frequent orientation (blue = 0 deg, red = 90 deg)

Fiber Orientations (2): Critical Zone

Top Layer (z = 1.73 mm)

Middle Layer (z = 0.84 mm)

Bottom Layer (z = 0.08 mm)

Color code indicating deviation from most frequent orientation (blue = 0 deg, red = 90 deg)

Fiber Orientations per Mesh Cell

Fiber Volume Fractions per Mesh Cell

Fiber Orientations Imported to Digimat

Adjustment of the Meshed Fiber Volume Fraction

- Volume Fraction (VF) of Fibers
 - Distribution over tensile specimen
 - High values in middle layer
 - First over-estimation by CT
 - Due to CT resolution not sufficient to separate fiber bundles into individual fibers
 - Distribution curve shifted to match known material composition

Multi-Scale Simulation

Micromechanical Simulation (Homogenization): Digimat-MF

Macro Simulation: Ansys

Single-phase Material Properties

- Thermoplast
- Fibers

Microstructure Morphology

- Fiber orientation
- Fiber volume fraction
- Fiber aspect ratio

Tensile Probe

Input:

- Dimensions
- Material model
 per mesh cell
- Tensile force

Output:

- Local strains
- Local stresses
- Local failure indicator

Tensile Test with Optical Strain Measurement

Epsilon Y

- Contactless and material independent measurement
- Optical 3-D-deformation- and video analysis
- Strain measurement in the measuring range from 0.01 % up to >100 %

Simulation vs. Experiment (1): Failure Location

Simulation vs. Experiment (2): Failure Strain

Conclusion

- > Simulation of the mechanical properties of LFT (long-fiber thermoplastics) components with complex structure requires an <u>empirical determination of material properties</u> on the basis of µ-CT
- > For this purpose, µ-CT scans with <u>high geometric and high contrast resolution</u> are required
- > Fiber orientations and fiber volume fractions were determined and mapped onto a volume mesh with VGSTUDIO MAX and exported to Digimat for mechanical simulation
- > Accurate mechanical simulation allows to significantly <u>shorten the time</u> required for assessment of design or material alternatives <u>in the development process</u>

Thank you