

Volume Graphics

Porosity Inspection for Castings acc. BDG Reference Sheet P 203

© 2021—Copyright notice

All contents, especially texts, photographs, and graphics are protected by copyright.

All rights, including reproduction, publication, editing, and translation, are reserved by Volume Graphics GmbH

New Porosity Inspection Functionality acc. to BDG Reference Sheet P 203

VGSTUDIO MAX

Industrial Computed Tomography Inspection Software for Light Metal Castings

Andreas Harborth Product Manager Casting

Volume Graphics GmbH | Heidelberg, Germany

BDG Reference Sheet P 203

BDG - Bundesverband der Deutschen Gießerei-Industrie e.V.

> VDG Reference Sheet P 201 was one of the first approaches to standardize the evaluate of surface porosity

Porosität kleines Quadrat: 1 % Porosität großes Quadrat: 12 % Porosität gestricheltes Quadrat: ca. 30 % Fig. 02: Reference surfaces for determining the porosity Source: www.guss.de

G Short History Lesson

- > BDG P 202 was the successor of VDG - P 201
- > Both were designed to measure porosity characteristics inside a cutting plane
- > Before VGSTUDIO MAX, this was done by simply cutting open the cast part

Fig. 03: Section plane of a casting with reference areas Source: www.guss.de

VDG - MERKBLATT		
Volumendefizite von Gußstücken aus Nichteisenmetallen	P 201 Mai 2002	
BDG Reference Sheet P202	2 eptember 2010 ut August 2015	
Volume Deficits of Castings Made Aluminium, Magnesium, and Zinc (Alloys	e from Casting	
BDG – Richtlinie	P 203 nd: 12. Dezember 201	
Porositätsanalyse und -beurtei mittels industrieller Röntger Computertomographie (CT	lung ı-)	

> With VGSTUDIO MAX, the user can first inspect in 3D CT in order to select the layer with the highest porosity

Fig. 04: 2D Section plane in 3D CT volume data Source: Volume Graphics GmbH

VDG - MERKBLATT		
Volumendefizite von Gußstücken aus Nichteisenmetallen	P 201 Mai 2002	
BDG Reference Sheet	P202 Version: September 2010 BDG-Layout August 2015	
Volume Deficits of Castings Made from Aluminium, Magnesium, and Zinc Casting Alloys		
BDG – Richtlinie	P 203 Stand: 12. Dezember 2019	
Porositätsanalyse und -beurteilung mittels industrieller Röntgen- Computertomographie (CT)		

> The user had to define regular shapes (squares, circles, triangles) in which the P 202 porosity key was applied

Fig. 05: 2D Section with reference area in 3D CT volume data Source: Volume Graphics GmbH

VDG - MERKBLATT		
Volumendefizite von Gußstücken aus Nichteisenmetallen	P 201 Mai 2002	
BDG Reference Sheet	02 1: September 2010 ayout August 2015	
Volume Deficits of Castings Made from Aluminium, Magnesium, and Zinc Casting Alloys		
BDG – Richtlinie	P 203 Stand: 12. Dezember 2019	
Porositätsanalyse und -beurteilung mittels industrieller Röntgen- Computertomographie (CT)		

> If the user altered the position of the inspection layer slightly, the OK/NOK decision might change as well

Fig. 06: Altered position of 2D section plane in 3D CT volume data Source: Volume Graphics GmbH

BDG Reference Sheet P 203

> The BDG Reference Sheet P 203 describes now cast part inspection for porosity in **3D**

Fig. 07: 3D CT volume data with detected porosity Source: Volume Graphics GmbH

nart of Hexago

BDG Reference Sheet P 203

Example for P 203 porosity inspection

- > Define the cast part areas in 2D/3D CAD for later porosity inspection
- > Hollow cylinder for functional area with
 Ø 26 H6 and 3.0 mm inspection thickness
- > This example is namend "ROI 2" (Region-of-Interest #2)
- > Define **porosity key** acc. BDG P 203 for this example:

P_{ROI} 0.15 / Ø_p 0.8 / Gap 2.0 / Z 4 / UØ_p 0.3

Fig. 08: Drawing section with porosity inspection sample Source: Volume Graphics GmbH

Fig. 09: P 203 Porosity key sample explanation Source: BDG Reference Sheet P 203 & Volume Graphics

Porosity Analysis with VGSTUDIO MAX acc. BDG Reference Sheet P 203

Porosity Inspection Workflow

- > Start CT equipment & VGSTUDIO MAX
- > Scan the cast part
- > Load 3D CT voxel data (VGL file)
- > Perform Surface Determination and "EasyPore" Porosity Detection
 > Start Porosity Analysis "P 203"

Fig. 10: Porosity analysis result Source: Volume Graphics GmbH

Porosity Analysis with VGSTUDIO MAX acc. BDG Reference Sheet P 203

Apply the BDG - P 203 porosity key

- intuitive via the input mask "P 203 key"
- porosity parameters acc. to a porosity inspection plan or technical drawing
- for P_G global (complete cast)
- for P_{ROI} (free defined sub-volumes)

Direct display of the BDG - P 203 porosity key, resulting from the value inputs

Tabular display of the porosity inspection results incl. the BDG - P 203 porosity key in 1st column

Results from the porosity analysis

- > are clearly displayed in the 3D window for each examined area in the scanned cast
- > including the "P 203" porosity key used
- > and including the green/red colored OK/NOK evaluations

Finally create Inspection Report

> including listing of all porosity keys according to BDG - P 203

Fig. 12: 3D view of Porosity analysis results Source: Volume Graphics GmbH

Your added value with 3D iCT and Porosity Analysis P 203

> Elimination of time-consuming manually performed porosity inspections

Fig. 13: Time savings with CT porosity inspection Source: Volume Graphics GmbH

> BDG Reference Sheet P 203

- describes test method for the 3D determination and assessment of volume deficits
- opens new approaches for quality monitoring using industrial CT in the foundry
- > The Porosity Key acc. to BDG Reference Sheet P 203
 - simplifies a porosity specification
 - can be integrated in 2D and 3D CAD
 - enable transparent test regulations for suppliers and customers

> The results of the porosity analysis acc. to BDG Reference Sheet P 203

- lead to dedicated OK and NOK decisions
- · can be exported and used for
 - statistical evaluations (SPC)
 - process capability analyzes (C_p/C_{pK})
 - trend analysis
 - casting process optimization
 - traceability
 - strength calculations and simulations

BDG Reference Sheet P 203

Download link: https://www.guss.de/prozess/normen-und-richtlinien

Fig. 14: BDGuss Website Source: www.guss.de

Ready for BDG Reference Sheet P 203 compliant inspection of cast parts

- > Fully 3D analysis on CT data
- > Non-destructive inspection
- > High flexibility for porosity inspection
- > Clearly defined inspection workflow
- > Standardized tolerance description with BDG - P 203 Porosity Keys
- > CT-scan quality: Automatic monitoring and documentation of Q-factor acc. BDG - P 203

Fig. 15: Example with 3D view of "global" porosity analysis results Source: Volume Graphics GmbH

- > Approved Volume Graphics algorithms for reliable porosity detection
- > Different porosity keys can be defined on regions of special interest (ROIs)
- > ROIs can already be defined as volumes on **3D CAD** and imported to VGSTUDIO MAX
- > Porosity keys are easy to generate
- > Allows quality assessment from product design to final production

Link 1: Volumegraphics.com/en/products/vgstudio-max Link 2: Video English Link 3: Video Deutsch

Glück auf!

Do you have questions?

Give us a call: +49 6221 73920 60

Or send us an e-mail to: sales@volumegraphics.com

Get the latest information by signing up for our free newsletter:

© 2021 Volume Graphics

