Validation of Failure of Long Fiber Thermoplastics by Digimat Analysis Coupled to Micro Computer Tomography

Heidelberg, September 14th, 2017

brose

DEUTSCHE INSTITUTE FÜR TEXTIL+FASERFORSCHUNG

Sebastian Krämer¹⁾, Jan Seyfarth²⁾ Tobias Dierig ³⁾, Hermann Finckh ⁴⁾, Peter Weidinger ⁵⁾

1)	Brose Group	Measurelab	Sebastian.kraemer@brso.com	+49 9561 21 7068
2)	e-Xstream	QU-Manager	Jan.seyfarth@e-xstream.com	+49 176 70 55 47 59
3)	Volume Graphics	Team Leader Image Processing	dierig@volumegraphics.com	+49 6221 73920 67
4)	DITF	Manager Simulation	hermann.finckh@ditf.de	+49 711 9340 401
5)	Brose Group	Director Materials Laboratory	peter.weidinger@brose.com	+49 9561 21 2464

Design of an Industrial µ-CT System

I = *I*₀ exp (-*kd*); *I*: intensity at detector

brose

VOLUME GRAPHICS

radiation protection cabin

µ-CT system at DITF in Denkendorf

Export of CT-data into Digimat Analysis Software

The high resolution scan was done by Hermann Finckh at DITF in Denkendorf

VOLUME GRAPHICS

Realization of the CT-Scan at Brose

- Positioning of the tensile specimen with a polystyrene holder
- Dimensions of the tensile specimen:
 - Height: 150 mm
 - Width: 10 mm
 - Thickness: 1.8 mm
- Complete tensile specimen was scanned two times in seven sub-scans (resolution: 12.5 μm; 50 μm)
- Total scanning time: 30 h
- Difficulty: stability of the x-ray-tube over a period of 30 h

Realization of the CT-Scan at DITF

- Positioning of the tensile specimen with a mounting
- Dimensions of the tensile specimen:
 - Height: 150 mm
 - Width: 10 mm
 - Thickness: 1.8 mm
- Complete tensil specimen was scanned in four sub-scans (resolution: 12.5 μm)
- Total scanning time: 8 h

- Advantage of the CT at ITV:
 - Machine is designed for analysis of fiber composite material

Comparison of Different CT Scans

First Scan 50 µm Brose, Low resolution

 $\begin{array}{c} \text{Second Scan 12,5 } \mu m \\ \text{Brose, High nominal resolution,} \\ \text{but noise and center artefacts} \end{array}$

Users Group Meeting 2017, Heidelberg

Analysis of CT Data using VGSTUDIO MAX

brose

VOLUME GRAPHICS

Analysis of CT Data using VGSTUDIO MAX

Microstructure

brose

Volume Fraction (VF) of Fibers

- Distribution over tensile specimen - High values in middle layer
- First over-estimation by CT
 - Due to value in grey scale analysis
- Distribution curve shifted

Simulation

Optical Strain Measurement

- Contactless and material independent measurement
- Optical 3-D-deformation- and video analysis

VOLUME GRAPHICS

brose

Strain measurement in the measuring range from 0.01 % up to >100 %

Simulation

- For simulation of failure a high resolution CT-scan with a good signal-noise-ratio and without circular artefacts is necessary
- The export of the local fiber orientation information and fiber content is possible, but time consuming
- Digimat proves to be PREDICTIVE for failure of LFT material
 - Based on OT + VF from μ-CT
 - Failure location
 - Strain at break

Thank you for your attention!

brose

VOLUME GRAPHICS

DEUTSCHE INSTITUTE FÜR TEXTIL+FASERFORSCHUNG

