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3D Printed Lattice Structures

Periodic

= Structural: lightweight design with = Different unit cell geometries (e.g.
3D printed components (e.g. cubic, diamond, dodecahedron,
aerospace components, truncated cuboctahedron, gyroid)

orthopedic implants)

= Pore sizes typically 500 — 1000 pm

Graded = Strut sizes typically 100 — 500 um

Images: D. Mahmoud, M. Elbestawi: Lattice Structures and Functionally Graded Materials: Applications in Additive Manufacturing of Orthopedic Implants: A Review.
J. Manuf. Mater. Process. 2017, 1, 13; doi: 10.3390/jmmp1020013
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Microporosity in Cast (Al) Components
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Functional: powertrain
components, e.g. motor blocks,
cylinder heads

Structural: vehicle chassis and
body components

Images:
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Porosity resulting from
inhomogeneous shrinkage during
solidification

Pores with irregular shapes and
lengths of up to = 1000 pm

(> 500 pm := macroporosity)

Porosity resulting from gas
evaporation from the melt, sand cores
(non-spherical) or from inclusion of
external gases (spherical)

Evenly distributed across larger areas

Diameters of up to = 300 um

BDG Richtlinie P202: Volumendefizite von Gussstiicken aus Aluminium-, Magnesium- und Zinkgusslegierungen. Stand September 2010.
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Porosity in 3D Printed Metal Components

Irre- = Porosity of =1 - 3 % resulting
gu- from incomplete melting
lar

= Pores with irregular shapes and
lengths of = 25 - 250 pm

= Structural: aircraft, aerospace,
automotive components, medical
implants, ...

= Porosity of =1 - 3 % resulting
from excessive energy / speed
(leading to evaporation of
hydrogen or metal)

= Near spherical pores with
diameters = 25 - 100 pm

Images: http://www.insidemetaladditivemanufacturing.com/blog/how-do-sIm-process-defects-impact-ti64-mechanical-properties
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FEM Simulation of Latice Structures

» FEM simulation typically overestimates stiffness by 10-30%
compared to experimental measurements due to neglection of
manufacturing deviations (strut diameter variation, strut inclination,

fractured struts) [1]

> In principle, such manufacturing deviations can be taken info
accountin FEM [2]

» However: Low practicability due to high effort:

‘L/”P'l'uc:’f’s
\

« "Although these methods will reduce the significant gap between
numerical and experimental results if successfully applied, the
application of such methods on different unit cells requires
significant dimensional characterization and
may be challenging to achieve” [1]

[1] D. Mahmoud, M. Elbestawi: Lattice Structures and Functionally Graded Materials: Applications in Additive Manufacturing of Orthopedic Implants: A Review. J. Manuf. Mater.

Process. 2017, 1, 13; DOI: 10.3390/jmmp1020013
[2] F. Quevedo Gonzalez: Finite element modeling of manufacturing irregularities of porous materials. Biomaterials and Biomechanics in Bioengineering. Vol. 3, No. 1 (2016) 1-14.

DOI: 10.12989/bme.2016.3.1.001. Images from [2]
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Mechanical FEM Simulation Including Porosity

Various approaches (examples) — none of which exactly represents locations and shapes of all pores

Stochastic Distribution [1] One Pore Only [2] Lego Brick Model [3]
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» Stochastic assignment of 3 + (surface - volume) mesh + includes larger pores and their
aggregate porosity levels (e.g. represents pore location and locations
0/2/20%) and corresponding shape — but only as coarse “lego brick
material parameters to the cells + Validated by experiments model” with large voxel size
of an FEM model — but only for one large pore (400 or 100 um), potentially

— Individual pores not captured at (d = 3050 pm, h = 580 pm) leading to stress artefacts
all

[1] FAT (2015): Modellierung der Einfliisse von Porenmorphologie auf das Versagensverhalten von Al-Druckgussteilen mit stochastischem Aspekt fiir durchgéangige Simulation von
GieRen bis Crash. FAT Schriftenreihe 277.

[2] F. Esposito (2016): Structural Simulation of Real Defects with Industrial Computed Tomography. International CAE Conference 2016, Parma

[3] P. Tempel, C. Eichheimer (2017): Digitalisierung von komplexen Volumendefektverteilungen am Beispiel von Stahlguss fiir die Festigkeitsbewertung unter quasi-statischer
Zugbeanspruchung.
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Limitations of FEM Simulations

sToP High Effort stop ) Approximation Errors

» High effort required for » Errors associated with
the generation of approximation of irregular
geometry-conforming surfaces with regular

geometries (eg. tetra-
hedrons, pyramids,
hexahedrons, ...)

meshes, if possible at all

» High computational cost
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Industrial X-Ray Computed Tomography (CT)

X-Ray source

X-Ray detector
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Industrial X-Ray Computed Tomography (CT)
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Industrial X-Ray Computed Tomography (CT)




Industrial X-Ray Computed Tomography (CT)




Industrial X-Ray Computed Tomography (CT)

Recon-
struction

Digital volumetric
representation
of scanned part
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Segmentation of All (Internal and External) Surfaces

CT image data Determined surface

on Advancing Analysis & Simulation i n Engineering | CAASE18



Accurate Representation of Complex Geomeiry

Porosity

ence on Advancing Analysis & Simulation i n Engine
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Immersed Boundary Method

Classical FEM Immersed Boundary
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Immersed-boundary FEM in VGSTUDIO MAX

3D surface models
(CAD, STL)

CT Scan

Surface Itr)nmec;sed =
segmentation oundary =
solver -

& YLUME VGSTUDIO MAX
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Immersed-boundary FEM in VGSTUDIO MAX
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Example: Tension Rod with just 1 Pore

Comparison between classical FEM and immersed boundary FEM

» -

nafems.org/caasel8

e Solve (5 min)

ANSYS
e CT->STL
- « Volume meshing
- (1 h)

Example

Assess effect
of a single large
pore within a
tension rod.
(Study with 5
rods)

VGSTUDIO MAX
e Solve (13 min)
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Example: 3D Printed Component with Pores (1)

Stress concentration caused by a pore

Pore causing hotspot

Mises Stress
High
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Example: 3D Printed Component with Pores (2)

Distribution on Ideal vs. Real Component

CAD CT Scan

(or result of process simulation)

Cursor 1
sor 1

£
Position [mm] 1.29 -52.43 -16.02
Vi

m—
lon Mises stress [Pa] 1.02428e+008 SR sition [mm] 5.23 -10.23 -10.63

Cur
Po
Von Mises stress [Pa] 1.92977e+008

Maximum von Mises
Stress (@ 1kN): 193 MPa
(+ 89%)

Maximum von Mises
Stress (@ 1kN): 102 MPa
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Example: Cast Al Part with Porosity (1)

Structural Mechanics Simulation taking the porosity and shape deviations info account
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Stress Concentration Around Pores

Von Mises stress [Pa]
2e+07

1.8e+07

1:6e+07
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Example: Cast Al Part with Porosity (2)

Stress Distribution on Ideal vs. Real Component

CAD CT Scan

Maximum von Mises Maximum von Mises
Stress (@ 1kN): 22 MPa Stress (@ 1kN): 32 MPa
(+ 45%)
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Comparison with Reference Simulation

« Calculate and visualize differences in results fo a reference simulation

Stress - Stress = A Stress
on CT Scan on CAD from Defects
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Example: Foam Structure (1)

Mechanics Simulation of a Foam Structure Material Probe
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Example: Foam Structure (2)

Effective Young's Modulus
Stress Field Displacement Field

Ve Mlises vees [Pe] IeplceERR oS ]
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© e
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Validation Experiments: Test Specimen

18 Aeronautic Brackets

(3D printed AlSi10Mg, 75 x 30 x 30 mm
3 samples each of 6 different pore distributions)

18 Tension Rods

(3D printed AISi10Mg, d =5 mm, | =50 mm
3 samples each with 75/ 125/ 250 pores
in 2 different random distributions A/ B)
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Validation Study

02 04 06

Elongation [mm]

=)

Immersed boundary FE
simulation

Quasi-static destructive
test
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Validation Details

Find largest N local maxima of von Mises stress: 0, (=0 ), 02 ... , Oy
Predictions:

> First crack occurs at either one of these positions

> Ultimate strengthec 1/ ( X,/ N)

Von Mises stress

High
e /
Position [mm] 0.96 -0.49 -0.39
Von Mises stress [Pa] 451085
B Cursor 3
Position [mm] 1LB3 -0.37 0.64
Von Mises stress [Pa] 435016
|
: %, Cursor 2
| Position (mm) =0.77 5.87 ~2.03 A .
Von Mises stress [Pa] 432765 N_3 N th|S Study
Low
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Results: Prediction of Tensile Strength

Prediction — 1/ avg(o; ) [1/Pa]

22

| | l l

T5A
75B
125A
125B
250A
250B

e +OX N

Correl.=96%

| I | E |

M rwsemesr ' |
[1] ¢

S T

= 250 pores

125 pores
- -~

q.of"k" @8 l:t

2 2 3 I 4

Experiment — tensile strength [kN]

4.5

[1] Fieres et al: Predicting failure in additively manufactured parts using X-ray computed tomography and simulation, 7 intl. conf. fatigue design 2017
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Results: Prediction of Tensile Strength

l l l l l l [1]

[
g L[ 250C

] _
250D X

7 L Base200 [ N
Notch  +
Bar200 I

61 Plain O - N

Prediction — 1/ avg(o; ) [1/Pa]

| | + H | | |
2.5 3 35 4 45 5 55 6 65

Experiment — tensile strength [kN]

[1] Fieres et al: Predicting failure in additively manufactured parts using X-ray computed tomography and simulation, 7" intl. conf. fatigue design 2017
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Simulation vs. Experiment (2): Crack Locations

25{)C_. specimen 1 of 3. HS; Bar200. specimen 2 of 3, HS;

» 12 of 18 specimen cracked at hot spot 1 or 2
» 3 specimen cracked at one of the top 10 hotspots

» 3 specimen cracked elsewhere
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Validation Against Classical FEM Simulation

. 20x20x20 mm cubic lattice

. 12 struts of 0.75 mm width and 1 mm spacing between them in
every direction

. 57.58 % porosity

. Material parameters of Ti6AI4V
(Young’s modulus 115 Gpa, Poisson ratio 0.3)

. 1 kN compressive load

. FEM Simulation with Autodesk Fusion 360 (tetrahedral elements,
Nastran solver)

. Voxel based simulation with VGSTUDIO MAX

Ashby-Gibson Traditional FEM Voxel-based FEM
model Autodesk Fusion 360 VGStudioMax
Effective Young’'s Modulus (GPa) 20.7 28.3 27.6
Max Von Mises stress (MPa) N/A 16.2 15.8

Source: A. du Plessis et.al: Selection of lattice design for medical implants by additive manufacturing. ASME J. Mech. Design, 2018, submitted
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Practical Use in R&D and Quality Assurance

R&D Quality Assurance
(1) Simulate stress distribution o-,p(X) for (1) Simulate stress distribution o,p(X) for
CAD model CAD model
(2) Simulate stress distribution o~(x) for (2) Include hotspots of stress distribution
CT scans of early prototypes* oc1(X) for CT scans of samples from
production* in QA criteria (e.g. in pore

max Ocr(X) >> Max Ocap(X) ?

: : max O¢r(X) <= max Ocap(X) !

— if yes: change manufacturing process
or design

— if no: OK

* Focusing on potentially critical regions of interest if necessary
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CT for Quality Assurance in 3D Printing

Wl il fmw)
et [fmnm] [&fo0oc)
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Nominal/Actual Comparison Coordinate Measurement
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Analysis .
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Micromechanics Simulation on CT Scans

VOLUME

GRAPHICS Products Solutions Services Support Company News

Simulation of Complex Materials Simulation of Components with Defects

https://www.volumegraphics.com/micromechanicssimulation
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Benefits

> No meshing required > All microstructural details > Predicted fracture
> No simulation expertise are captured by a locations and tensile
required subvoxel-precise material strengths validated in
> Seamless workflow from segmentation experim_ental tensile tests
material segmentation and > Simulated stresses can be of tiD printed components
defect detection to directly related to the with pores
simulation in one software underlying material > Effective elastic properties
microstructure (e.g. size, of a cubic lattice validated
location and shape of against a conventional
pores or thicknesses of FEM simulation

struts in open-cell foams)
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